From equations of state to gravitational wave spectra

Mika Mäki, Doctoral Researcher,
Computational Field Theory group, University of Helsinki

Advancing gravitational wave predictions from cosmological first-order phase transitions
CERN, 28.8.2025

Different types of phase transition simulations

  • Lattice simulations
    • Capture multiple types of effects: bubble expansion, collision and turbulence
    • Computationally expensive
  • Analytical approximations
    • Broken power law, double broken power law
    • Useful but rather crude approximations
  • Semi-analytical approximation: Sound Shell Model
    • Captures dependence on phase transition parameters
    • Reproduces the results of lattice simulations for intermediate-strength transitions

Self-similar fluid shells

Relativistic combustion
Source: Hindmarsh et al. (2021, arXiv:2008.09136), hybrids discovered by Kurki-Suonio & Laine (1995, arXiv:hep-ph/9501216)
Friction → constant $v_\text{wall}$ → self-similar solution

Three types of solutions, determined by
  • Wall velocity $v_\text{wall}$
  • Transition strength $\alpha_n$
  • Speed of sound $c_s(T,\phi)$
Explanation of the figure
  • Black circle: phase boundary, aka. bubble wall
  • Colour: velocity of moving plasma
  • $c_s$: speed of sound
  • $v_\text{w}$: wall speed
  • $c_\text{J}$: Chapman-Jouguet speed

Equations of state

  • Equation of state for an ultrarelativistic plasma with multiple degrees of freedom $$p(T,\phi) = \frac{\pi^2}{90} g_p(T,\phi) T^4 - V(T,\phi)$$
  • The rest can be deduced with thermodynamics
    • Entropy density $s = \frac{dp}{dT}$, enthalpy density $w = Ts$,
      energy density $e = w - p$, sound speed $c_s \equiv \sqrt{\frac{dp}{de}}$
  • Bag model: equation of state with constant degrees of freedom $$p_\pm = a_\pm T^4 - V_\pm \quad \Rightarrow \quad c_s^2 \equiv \frac{dp}{de} = \frac{1}{3}$$
  • Constant sound speed model
    (aka. $\mu, \nu$ model or template model, arXiv:2004.06995, arXiv:2010.09744) $$p_\pm = a_\pm \left( \frac{T}{T_0} \right)^{\mu_\pm - 4} T^4 - V_\pm {\color{gray} \approx a_\pm T^{\mu_\pm} - V_\pm } \quad \Rightarrow \quad c_{s\pm}^2 = \frac{1}{\mu_\pm - 1}$$
  • From an arbitrary particle physics model: $g_p(T,\phi), \ V(T,\phi)$
p(T)

Sound Shell Model

  • Hindmarsh (2018, arXiv:1608.04735), Hindmarsh & Hijazi (2019, arXiv: 1909.10040)
  • When the transition strength $\alpha_n \ll 1$ and $v_\text{wall} < 1$
    • Sound waves are the majority contribution
      → collisions and turbulence can be neglected → no interaction between the bubbles
Sound Shell Model

Correction factors

  • Giombi et al. (2024, arXiv:2409.01426): Changing the sound speed → source lifetime factor $\Lambda$
    $$\begin{align} \tilde{P}_\text{gw,corr.}(k) &\equiv \Lambda \tilde{P}_\text{gw}(k) & \Lambda &\equiv \frac{1}{1 + 2\nu} \left(1 - \left(1 + \frac{\Delta \eta}{\eta_*} \right) \right)^{-1-2\nu} \\ \nu_\text{gdh2024} &\equiv \frac{1-3\omega}{1 + 3\omega} & \omega(T,\phi) &\equiv \frac{p(T,\phi)}{e(T,\phi)} \quad \textcolor{gray}{\omega_\text{bag} = \frac{1}{3} \rightarrow \nu_\text{bag} = 0} \end{align}$$
  • Gowling & Hindmarsh (2021, arXiv:2106.05984): Suppression factor
    • From comparison with 3D hydrodynamic simulations
    $$\Omega_\text{gw} = \Sigma(v_\text{w},\alpha_n) \Omega_\text{gw}^\text{ssm}(z)$$
  • Giombi et al. (2024, arXiv:2409.01426)
    • Low-frequency tail of the spectrum
Suppression Suppression factor
Low-k Low-frequency tail

PTtools: From equations of state to GW spectra

  • Python-based simulation framework, doi:10.5281/zenodo.15268219
  • Based on the Sound Shell Model by Hindmarsh et al.
    • Computationally efficient compared to lattice simulations
  • Developed by Mark Hindmarsh, Chloe Hopling (f.k.a. Gowling), Mika Mäki & Lorenzo Giombi
  • Input
    • Equation of state: $p(T,\phi)$
    • Wall speed $v_\text{wall}$
    • Transition strength parameter $\alpha_n \equiv \frac{4D\theta(T_n)}{3w_n} = \frac{4}{3} \frac{\theta_+(T_n) - \theta_-(T_n)}{w_n}$
    • Hubble-scaled mean bubble spacing $r_* \equiv H_n R_*$
  • Output: GW power spectrum today $\Omega_{gw,0}(f)$
  • Use case: estimate the likelihood of various Standard Model extensions with LISA data
PTtools
https://pttools.readthedocs.io

From fluid profiles to GW spectra

Bubbles

🠮

Spectra
Fluid shell velocity profiles
  • Boundary conditions
  • ODE integration
GW spectra
  • Sound Shell Model: sine transform etc.
  • Conversion to observable $f$ etc.
  • Experimentally testable by LISA

PTPlot: Easy plotting of GW spectra

  • Online plotting utility, arXiv:1704.05871
    • Based on the Python web framework Django
    • Developed by David Weir, Deanna Hooper, Jenni Häkkinen & Mika Mäki
  • Supports several models for the GW spectrum
    • Broken power law
    • Double broken power law (upcoming)
    • Sound Shell Model (upcoming)
PTPlot form
https://ptplot.org

Summary

  • The equation of state has a significant effect on the GW spectrum
  • Sound Shell Model enables quick computation of the GW spectrum
  • Utilities: PTtools & PTPlot, https://www.ptplot.org
  • Open question: How sensitive will LISA be to different sound speeds?

Fluid velocity profiles

Velocity profiles

Fluid velocity profiles

Velocity profiles

GW power spectra

GW power spectra

GW power spectra

GW power spectra

GW power spectra today

GW power spectra today

GW power spectra today

GW power spectra today