Generating gravitational wave spectra from phase transitions with realistic equations of state

Mika Mäki, Doctoral Researcher,
Computational Field Theory group, University of Helsinki

8.8.2025

Contents of the talk

  • Introduction: Types of simulations
  • Hydrodynamics
    • Dimensionality of the problem
    • Wave equation
    • Phase boundary
    • Hydrodynamic equations
    • Fluid shell types
  • Equations of state
  • Sound Shell Model
    • Correction factors
  • Simulation software
    • PTtools
    • PTPlot

Different types of phase transition simulations

  • Lattice simulations
    • Capture multiple types of effects: bubble expansion, collision and turbulence
    • Computationally expensive
  • Analytical approximations
    • Broken power law, double broken power law
    • Useful but rather crude approximations
  • Semi-analytical approximation: Sound Shell Model
    • Captures dependence on phase transition parameters
    • Reproduces the results of lattice simulations for intermediate-strength transitions

Dimensionality of the problem

  • We investigate the expansion of a single bubble
  • Self-similarity
    • Friction results in a constant wall speed $v_\text{wall}$
    • As the bubble expands, its relative shape stays the same
    • → Time-independent solution
  • Spherical symmetry
  • 3+1 dimensional problem reduces to time-independent 1D
Relativistic combustion

Wave equation

  • Constant background space-time → energy-momentum conservation $\nabla_\mu T^{\mu\nu} = 0$
  • Energy-momentum tensor of an ideal fluid $$T^{\mu \nu}_f = (e+p) u^\mu u^\nu + p g^{\mu \nu}$$
  • For a one-dimensional flow in Cartesian coordinates $$\begin{align} \partial_t \left[ (e+pv^2) \gamma^2 \right] + \partial_x \left[ (e+p) \gamma^2 v \right] &= 0, \label{eq:ep_conservation_1d_1} \\ \partial_t \left[ (e+p) \gamma^2 v \right] + \partial_x \left[ (ev^2 + p) \gamma^2 \right] &= 0 \label{eq:ep_conservation_1d_2} \end{align}$$
  • First-order perturbation → wave equation with a speed of sound $$\partial_t^2 (\delta e) - \frac{\delta p}{\delta e} \partial_x^2(\delta e) = 0 \qquad c_s^2 \equiv \frac{dp}{de} = \frac{dp/dT}{de/dT}$$

Phase boundary

  • Energy-momentum conservation $$\nabla_\mu T^{\mu\nu} = 0 \quad \Rightarrow \quad \partial_z T^{zz} = \partial_z T^{z0} = 0$$
  • Inserting ideal fluid $T^{\mu \nu}_f = (e+p) u^\mu u^\nu + p g^{\mu \nu}$ → junction conditions $$\begin{align} w_- \tilde{\gamma}_-^2 \tilde{v}_- &= w_+ \tilde{\gamma}_+^2 \tilde{v}_+ \label{eq:junction_condition_1} \\ w_- \tilde{\gamma}_-^2 \tilde{v}_-^2 + p_- &= w_+ \tilde{\gamma}_+^2 \tilde{v}_+^2 + p_+ \label{eq:junction_condition_2} \end{align}$$
  • By defining new variables $\theta = \frac{1}{4}(e-3p), \quad \textcolor{red}{\alpha_+} \equiv \frac{4}{3} \frac{\theta_+(w_+) - \theta_-(w_-)}{w_+}$ $$\begin{align} \tilde{v}_+ &= \frac{1}{2(1+\textcolor{red}{\alpha_+})}\left[ \left(\frac{1}{3\tilde{v}_-}+\tilde{v}_-\right) \pm \sqrt{\left(\frac{1}{3\tilde{v}_-} - \tilde{v}_- \right)^2 + 4\textcolor{red}{\alpha_+}^2 + \frac{8}{3} \textcolor{red}{\alpha_+}} \right], \label{eq:v_tilde_plus} \\ \tilde{v}_- &= \frac{1}{2} \left[ \left( (1+\textcolor{red}{\alpha_+})\tilde{v}_+ + \frac{1-3\textcolor{red}{\alpha_+}}{3\tilde{v}_+} \right) \pm \sqrt{\left((1+\textcolor{red}{\alpha_+})\tilde{v}_+ + \frac{1-3\textcolor{red}{\alpha_+}}{3\tilde{v}_+} \right)^2 - \frac{4}{3}} \right]. \label{eq:v_tilde_minus} \end{align}$$

Hydrodynamic equations

  • Energy-momentum conservation $\nabla_\mu T^{\mu\nu} = 0$
  • Projection → hydrodynamic equations away from the phase boundary $$\begin{align} 0 &= u_\mu \partial_\nu T^{\mu \nu} = -\partial_\mu (w u^\mu) + u^\mu \partial_\mu p, \\ 0 &= \bar{u}_\mu \partial_\nu T^{\mu \nu} = w \bar{u}^\nu u^\mu \partial_\mu u_\nu + \bar{u}^\mu \partial_\mu p. \end{align}$$
  • Using self-similarity $\xi = \frac{r}{t}$ and parametrising $$\begin{align} \frac{d\xi}{d\tau} &= \xi \left[ (\xi - v)^2 - c_s^2 (1 - \xi v)^2 \right], \\ \frac{dv}{d\tau} &= 2 v c_s^2 (1 - v^2) (1 - \xi v), \\ \frac{dw}{d\tau} &= w \left( 1 + \frac{1}{c_s^2} \right) \gamma^2 \mu \frac{dv}{d\tau}. \end{align}$$
  • Note that $c_s^2$ is computed using user-provided functions

Fluid shells

Relativistic combustion
Three types of solutions, determined by
  • Wall velocity $v_\text{wall}$
  • Transition strength $\alpha_n$
  • Speed of sound $c_s(T,\phi)$
Explanation of the figure
  • Black circle: phase boundary, aka. bubble wall
  • Colour: velocity of moving plasma
  • $c_s$: speed of sound
  • $v_\text{w}$: wall speed
  • $c_\text{J}$: Chapman-Jouguet speed

General equation of state

  • Equation of state for an ultrarelativistic plasma with multiple degrees of freedom $$p(T,\phi) = \frac{\pi^2}{90} g_p(T,\phi) T^4 - V(T,\phi)$$
  • The rest can be deduced with thermodynamics
    • Entropy density $s = \frac{dp}{dT}$
    • Enthalpy density $w = Ts$
    • Energy density $e = w - p$
    • Sound speed $c_s \equiv \sqrt{\frac{dp}{de}}$

Simple equations of state

  • Bag model: equation of state with constant degrees of freedom $$g_\pm = \frac{90}{\pi^2} a_\pm \quad \Rightarrow \quad p_\pm = a_\pm T^4 - V_\pm, \quad c_s^2 \equiv \frac{dp}{de} = \frac{1}{3}$$
  • Constant sound speed model (aka. $\mu, \nu$ model or template model) $$\begin{align} g_{p\pm} &= \frac{90}{\pi^2} a_\pm \left( \frac{T}{T_0} \right)^{\mu_\pm - 4} \\ \Rightarrow \quad p_\pm &= a_\pm \left( \frac{T}{T_0} \right)^{\mu_\pm - 4} T^4 - V_\pm {\color{gray} \approx a_\pm T^{\mu_\pm} - V_\pm } \\ c_{s\pm}^2 &= \frac{1}{\mu_\pm - 1} \end{align}$$

Equation of state from an arbitrary particle physics model

  • Non-constant degrees of freedom → varying speed of sound $c_s(T,\phi)$
  • The equation of state can be constructed from $V(T,\phi), \ g_p(T,\phi)$ and preferably also $g_e(T,\phi)$ or $g_s(T,\phi)$ $$\begin{align} g_p &= 4g_s - 3g_e \\ e(T,\phi) &= \frac{\pi^2}{30} g_e(T,\phi) T^4 + V(T, \phi) \\ p(T,\phi) &= \frac{\pi^2}{90} g_p(T,\phi) T^4 - V(T, \phi) \\ s(T,\phi) &= \frac{2\pi^2}{45} g_s(T,\phi) T^3 \end{align}$$
  • This can also be done with e.g. WallGo

Sound Shell Model

  • Hindmarsh (2018), Hindmarsh & Hijazi (2019)
  • When the transition strength $\alpha_n \ll 1$ and $v_\text{wall} < 1$
    • Sound waves are the majority contribution: $\Omega_{gw} = \textcolor{gray}{\Omega_{collisions}} + \Omega_{sw} + \textcolor{gray}{\Omega_{turbulence}}$
    • Collisions and turbulence can be neglected → no interaction between the bubbles
  • After the bubbles have merged, the fluid shells continue as sound waves
  • The velocity field is the superposition of the individual bubbles that have $v(\xi), e(\xi), w(\xi)$
  • Sine transformation to wavenumber space → wavefunction launched by a single bubble $A(z)$
  • Superposition of bubbles → plane wave components of the velocity field $P_v(z)$
  • Shear stress in the fluid → unequal time correlator (UETC) of the shear stress, $U_\Pi$
  • → GW power spectrum $\mathcal{P}_{gw}(z)$
  • Conversion from $z$ to $f$: $\mathcal{P}_{gw}(z)$ → $\Omega_{gw,0}(f)$
  • Together: $(v(\xi), e(\xi), w(\xi)) \rightarrow A(z) \rightarrow P_v \rightarrow U_\pi \rightarrow \mathcal{P}_{gw}(z) \rightarrow \Omega_{gw,0}(f)$

Correction factors

  • Giombi et al. (2024): Changing the sound speed → source lifetime factor $\Lambda$
    $$\begin{align} \tilde{P}_\text{gw,corr.}(k) &\equiv \Lambda \tilde{P}_\text{gw}(k) & \Lambda &\equiv \frac{1}{1 + 2\nu} \left(1 - \left(1 + \frac{\Delta \eta}{\eta_*} \right) \right)^{-1-2\nu} \\ \nu_\text{gdh2024} &\equiv \frac{1-3\omega}{1 + 3\omega} & \omega(T,\phi) &\equiv \frac{p(T,\phi)}{e(T,\phi)} \quad \textcolor{gray}{\omega_\text{bag} = \frac{1}{3} \rightarrow \nu_\text{bag} = 0} \end{align}$$
  • Gowling & Hindmarsh (2021): Suppression factor
    • From comparison with 3D hydrodynamic simulations
    $$\Omega_\text{gw} = \Sigma(v_\text{w},\alpha_n) \Omega_\text{gw}^\text{ssm}(z)$$
  • Giombi et al. (2024)
    • Low-frequency tail of the spectrum
Suppression

PTtools: From equations of state to GW spectra

  • Python-based simulation framework
  • Based on the Sound Shell Model by Hindmarsh et al.
    • Computationally efficient compared to lattice simulations
  • Developed by Mark Hindmarsh, Chloe Hopling & Mika Mäki
  • Input
    • Equation of state: $p(T,\phi)$
    • Wall speed $v_\text{wall}$
    • Transition strength parameter $\alpha_n \equiv \frac{4D\theta(T_n)}{3w_n} = \frac{4}{3} \frac{\theta_+(T_n) - \theta_-(T_n)}{w_n}$
    • Hubble-scaled mean bubble spacing $r_* \equiv H_n R_*$
  • Output: GW power spectrum today $\Omega_{gw,0}(f)$
  • Use case: estimate the likelihood of various Standard Model extensions with LISA data

Fluid shell algorithm: detonations

  • Solve boundary conditions at the wall for known $w_+=w_n, v_+=0$
    • Using user-provided $p(T,\phi)$ → numerical solving
  • Integrate from the wall to the fixed point at $v=0$
    • Using $c_s^2(w,\phi)$ based on user-provided functions → numerical ODE integration
Detonation

Fluid shell algorithm: deflagrations

  • Guess $w_-$, the enthalpy behind the wall
  • Solve boundary conditions at the wall for $w_+, v_+$
  • Integrate to the shock
    • $v_{sh}(\xi)$ is computed from the boundary conditions → has to be found numerically
  • Solve boundary conditions at the shock
  • Check if $w=w_n$
  • If not, change the enthalpy guess and try again
Deflagration

Fluid shell algorithm: hybrids

  • The same as for subsonic deflagrations, but with an additional integration behind the wall
  • Guess $w_-$, the enthalpy behind the wall
  • Solve boundary conditions at the wall for $w_+, v_+$
  • Integrate to the shock
  • Solve boundary conditions at the shock
  • Check if $w=w_n$
  • If not, change the enthalpy guess and try again
  • Once the correct enthalpy has been found, integrate from the wall to the fixed point at $v=0$
Hybrid

From fluid profiles to GW spectra

Bubbles

🠮

Spectra
Fluid shell velocity profiles
  • Boundary conditions
  • ODE integration
GW spectra
  • Sine transform
  • Conversion to observable $f$ etc.
  • Experimentally testable by LISA

How to use PTtools

How to generate the figures on the previous slide
                        pip install pttools-gw
                    
                            
                                from pttools.analysis import plot_spectra_omgw0, plot_bubbles_v
                                from pttools.bubble import Bubble
                                from pttools.models import ConstCSModel
                                from pttools.omgw0 import Spectrum

                                alpha_n = 0.2
                                model = ConstCSModel(css2=1/3, csb2=1/4, alpha_n_min=alpha_n)
                                bubbles = [
                                    Bubble(model, v_wall=0.3, alpha_n=alpha_n),
                                    Bubble(model, v_wall=0.5, alpha_n=alpha_n),
                                    Bubble(model, v_wall=0.9, alpha_n=alpha_n)
                                ]
                                spectra = [Spectrum(bubble, r_star=0.1, Tn=200) for bubble in bubbles]

                                plot_bubbles_v(bubbles, path="bubbles.svg", v_max=0.5)
                                plot_spectra_omgw0(spectra, path="spectra.svg")
                            
                        
PTtools
https://pttools.readthedocs.io

Fluid velocity profiles

Velocity profiles

Fluid velocity profiles

Velocity profiles

GW power spectra

GW power spectra

GW power spectra

GW power spectra

GW power spectra today

GW power spectra today

GW power spectra today

GW power spectra today

PTPlot: Easy plotting of GW spectra

  • Online plotting utility
    • Based on the Python web framework Django
    • Developed by David Weir, Deanna Hooper, Jenni Häkkinen & Mika Mäki
  • Supports several models for the GW spectrum
    • Broken power law
    • Double broken power law (new)
    • Sound Shell Model (new)
PTPlot
https://ptplot.org